

TWGHs Lo Ko Ting Memorial College Mathematics STEM Education

S2 Chapter 8

Pythagoras' Theorem
Junior Mathematician

Name: \qquad
Class:
Group:

Contents

- Interesting Trivia: Pythagoras' Theorem used in Architecture
- Tips
- Instruction of developing Pythagoras’ Theorem
- Discussion
- Consolidation
- Thinking Time

Interesting Trivia: Pythagoras' Theorem used in Architecture

Figure 1 Clifton Suspension Bridge in South West England
Pythagoras' Theorem used in Architecture

leg

Pythagoras' Theorem: $a^{2}+b^{2}=c^{2}$
Figure 2 Parts of a right-angled triangle

Pythagoras' Theorem is an equation that many architects use while designing famous buildings. This theorem states that "In a right-angled triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse."

If an architect is building a square structure, he or she can split the square into two triangles. They can then easily figure out the length of the third side when the architect knows those of the other two sides.

Life is made easier for architect in terms of determining measures of different side lengths with using the Pythagoras' Theorem.

A. Tips

Pay attention to the tips below during the process:

- Use a ruler and a pencil to construct the graph;
- Be careful with the naming of corresponding congruent triangles;

Mission : Be a junior mathematician and develop the Pythagoras' Theorem by YOURSELF

B. Instruction of developing Pythagoras' Theorem

Step 2

Let the length of $A S$ be a, i.e. $A S=B T=U D=V C=a$ Let the length of $V A$ be b, i.e. $V A=B S=D T=C U=b$ Let the length of $V S$ be c, i.e. $V S=S T=U T=U V=c$

C. Discussion

1. Provide the reason for proving that $\triangle V A S \cong \triangle S B T \cong \triangle T C U \cong \triangle U D V$.

Ans: $\Delta V A S \cong$	$\cong S S B T \quad($
$\Delta S B T \cong \Delta T C U \quad($	$)$
$\Delta T C U \cong \Delta U D V($	$)$
$\Delta T C U \cong \Delta U D V($	

2. Find the area of $\triangle V A S, \triangle S B T, \triangle T C U$ and $\triangle U D V$ in terms of a and b respectively.

Ans: Area of the $\triangle V A S=$
Area of the $\Delta U D V=$
3. Find the area of the inner square $S T U V$ in terms of c.

Ans: Area of the inner square $S T U V=$
4. What is the relationship between the area of square $A B C D, \triangle V A S, \triangle S B T, \triangle T C U, \triangle U D V$ and inner square $S T U V$? (Hints: find the relationship in terms of a, b and c.)

Ans: Area of the square $A B C D=$

$$
(a+b)^{2}=
$$

From the above induction, you know how the Pythagoras' Theorem is proved!!

D. Consolidation

1. According to the previous activity, what is the required condition if you want to use Pythagoras' Theorem? (Hints: Which the type of triangle $\triangle V A S, \triangle S B T, \triangle T C U$ and $\triangle U D V$ are?)

Ans: Pythagoras' Theorem can only be used with
triangle.

Find the unknown in each of the following triangles.

4.
\qquad

E. Thinking Time

\qquad

