TWGHs Lo Kon Ting Memorial College

S2 Mathematics 2020 – 2021

STEM Worksheet --- Creating a Model of Pythagoras' Theorem Worksheet 1

Name:	Class:	· \	Group:	Date:
	C1400.		, Gioup.	Date.

Pythagoras' Theorem

In $\triangle ABC$, if $\angle C = 90^\circ$, then $a^2 + b^2 = c^2$.

Proof of Pythagoras' Theorem by Areas

Figure 1.1 shows a big square of side c. It consists of:

- 4 identical *right-angled* triangles;
- and 1 small square of side (b-a).

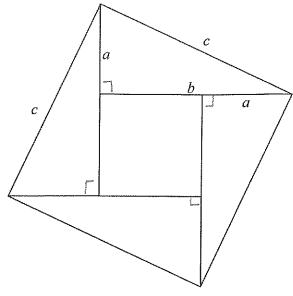


Figure 1.1

Based on the figure above, how can we prove that $a^2 + b^2 = c^2$?

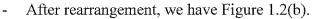
(Hint: Consider the area of the big square, 4 triangles and the small square.)

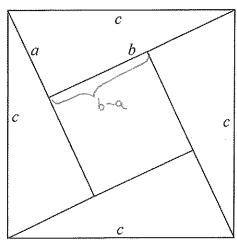
Area of the big square =
$$C^2$$

Area of the 4 transfes = $4 \times \frac{ab}{2} = 2ab$

Area of the Small square = $(b-a)^2 = b^2 - 2ab + a^2$

... Area of the big square = Area of the 4 triangles


+ Area of the Small square


$$C^2 = 2ab + b^2 - 2ab + a^2$$

$$C^2 = a^2 + b^2$$

Proof of Pythagoras' Theorem by Rearrangement (重排) and Areas

- Figure 1.2(a) is the same as Figure 1.1 on the previous page.

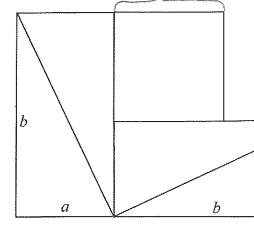


Figure 1.2(a)

Figure 1.2(b)

Based on the figures above, how can we prove that $a^2 + b^2 = c^2$?

After rearrangement, the areas of Figure 1.2(a) and Figure 1.2(b) are the same.

$$C^{2} = a \cdot b + a \cdot b + (b-a)^{2}$$

$$C^{2} = 2ab + b^{2} - 2ab + a^{2}$$

$$C^{2} = a^{2} + b^{2}$$

[2

 \boldsymbol{a}