HKCWCC

Chapter 7: Limit of a sequence

1. Sequences:

A sequence is a set of numbers a_1, a_2, a_3, \dots in a definite order of arrangement and formed according to a definite rule.

Definition 1.1

A function of a positive integral variable, denoted by f(n) or a_n , where $n = 1, 2, 3, \ldots$ is a called a sequence.

Each number in the sequence is called a *term*; a_n is called the nth term. *Three* usual notations as follows:

- (1) a_1, a_2, a_3 ;
- (2) a_n (n = 1, 2, 3,)
- (3) $\{a_n\}$

Ex. 1.1: The sequence $\{a_n\}$ is defined inductively by

$$a_1 = 2\sqrt{5}, ..., a_{n+1} = \frac{1}{2}(a_n + \frac{5}{a_n})$$
 (n=1,2,3,....)

Express $\frac{a_{n+1} - \sqrt{5}}{a_{n+1} + \sqrt{5}}$ in terms of a_n . Hence find a_n .

Ex. 1.2: Determine the n^{th} term of the sequence $a_1 = 1$, $a_n = \frac{4a_{n-1} - 9}{a_{n-1} - 2}$ (n = 2, 3, 4,)

2. Limit of a Sequence

We always interest about the sequence as for 'large' values of n. What are the 'very distant' members of the sequence are like.

For instance,
$$\{1-\frac{1}{n}\}=0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$

For the above example, as n goes large, the term will tend to 1.

i.e. 1 is called the 'limit of the sequence'.

The sequences $\{1 - \frac{1}{n}\} = 0, 2, 0, 2, \dots$ has no such property. \therefore it has no limit.

Definition 2.1

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and L is a fixed real number.

Then $\{a_n\}_{n=1}^{\infty}$ has the limit L as n tends to infinity iff

$$[\forall e > 0, \exists N \in N \quad st. \quad |a_n - L| < e \quad \forall_n > N]$$

We write $a_n \to L$ as $n \to \infty$ OR $\lim_{n \to \infty} a_n = L$

N.B.: (1)
$$|a_n - L| < \mathbf{e} \implies -\mathbf{e} < |a_n - L| < \mathbf{e}$$

 $\implies L - \mathbf{e} < a_n < L + \mathbf{e}$

 \Rightarrow where the open interval $(L - \boldsymbol{e}, L + \boldsymbol{e})$ is called the \boldsymbol{e} -neighborhood of

the limit L.

- is arbitrary chosen, that is the -neighborhood of L is not unique.

- (2) N depends on
- (3) x_n clusters around the neighborhood of a limit 'a' of a sequence
- (4) $|a_n L| < \mathbf{e}$, $\forall n > N$ means $|a_n L| < \mathbf{e}$ $|a_{n+1} - L| < \mathbf{e}$, $|a_{n+2} - L| < \mathbf{e}$, ... are also true.

i.e. n > N is used to make sure that the tail of the sequence and it is of the sequence and it is often to say "for sufficiently large of n".

Ex. 2.1 Using the above definition to prove that

(a)
$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$

(b)
$$\lim_{n \to \infty} \left\{ 2 + \left(-\frac{1}{2} \right)^n \right\} = 2$$

Classworks: (a) Prove that if 0 < < 1, then $\lim_{n \to \infty} \mathbf{a}^n = 0$

- (b) Prove that if a > 1, then $\lim_{n \to \infty} \sqrt[n]{a} = 1$
- (c) Prove that $\lim_{n\to\infty} \frac{C}{n^p} = 0$ where C = 0, & p > 0 are constants.
- (d) Prove that $\lim_{n \to \infty} \frac{\sin \frac{n\mathbf{p}}{2}}{n} = 0$

Definition 2.2

A sequence $\{a_n\}_{n=1}^{\infty}$ is called a **constant sequence** iff there is a positive integral number s.t. $a_n = k$ for $n \ge np$.

For example: $C_1 = \{2, 2, 2, \dots \}$

 $C_2 = \{-20, -10, 5, 4, 1, 1, 1, 1, ...\}$ are constant sequences.

Definition 2.3

If a sequence $\{a_n\}$ has a limit zero, then this sequence is called an infinitesimally small quantity

i.e.
$$\lim_{n\to\infty} a_n = 0$$
 iff $\forall \boldsymbol{e} > 0$, $\ni N \in N$, s.t. $|a_n| < \boldsymbol{e}$

Theorem 2.1

$$\lim_{n\to\infty} a_n = L \text{ iff } \lim_{n\to\infty} (a_n - L) = 0$$

Theorem 2.2

Let q is a fixed real number & |q| < 1, then $\lim_{n \to \infty} q^n = 0$

Theorem 2.3

Let x be a fixed positive numbers, then $\lim_{n\to\infty} \sqrt[n]{x} = 1$.

3. Infinity

Definition 3.1

A sequence $\{x_n\}_{n=1}^{\infty}$ tends to infinity as n tends to iff $\forall M>0, \exists N \in \mathbb{N}$ s.t. when $n>N, |x_n|>M$.

We can write $\lim_{n\to\infty} x_n = \infty$ OR $x_n \to \infty$ as $n\to\infty$.

N.B.:

- (1) The tail of the sequence X_n lies outside the open interval (-M, M).
- (2) $\lim_{n\to\infty} x_n = \infty$ means the sequence diverges to infinity (i.e. the sequence is said to be divergent).

Definition 3.2

- (a) A sequence $\{x_n\}_{n=1}^{\infty}$ tends to +ve infinity as n , iff $\forall M>0$, $\exists N\in N$ s.t. n>N, $x_n>M$, denoted by $\lim_{n\to\infty}x_n=+\infty$ OR $x_n\to+\infty$ as n.
- (b) A sequence $\{x_n\}_{n=1}^{\infty}$ tends to –ve infinity as n , iff $\forall M>0$, $\exists N\in \mathbb{N}$ s.t. n>N $x_n<-M$, denoted by $\lim_{n\to\infty}x_n=-\infty$ OR $x_n\to-\infty$ as n.
- **N.B.:** If $\lim_{n\to\infty} x_n = +\infty$, then $\lim_{n\to\infty} x_n = \infty$. But conversely is not true i.e. If $\lim_{n\to\infty} x_n = \infty$, then x_n may not tend to +ve OR -ve . e.g. $\{1,-2,3,-4,\ldots, (-1)^{n+1}n,\ldots\}$
- **Ex. 3.1:** By definition, show that $\lim_{n\to\infty} a_n = \infty$ where $a_n = 3^{2n-1}$.

Theorem 3.1

Let q be a fixed real number with |q| > 1, then $\lim_{n \to \infty} q^n = \infty$. Furthermore, if q > 1, then $\lim_{n \to \infty} q^n = +\infty$.

PROOF:

Let M be any given +ve number

(i) If M > 1, then the inequality $\left| q^n \right| = \left| q \right|^n > M$ $\Rightarrow n \ln |q| > \ln M$ $\Rightarrow n > \frac{\ln M}{\ln |q|}$

We take $N = \frac{\ln M}{\ln |q|}$ Then when n>N, we have $|q^n| > M$.

For details, read P. 283

Theorem 3.2

If $\lim_{n\to\infty} x_n = \infty$ & k is a non-zero constant (k is independent of n) then $\lim_{n\to\infty} kx_n = \infty$.

N.B.: (i) If $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = +\infty$, then

- (a) $\lim_{n \to \infty} (x_n + y_n) = +\infty.$
- (b) $\lim_{n\to\infty} kx_n = \begin{cases} +\infty & if \ k+ve \quad cons \tan t \\ -\infty & if \ k-ve \quad cons \tan t \end{cases}.$
- (c) $\lim_{n \to \infty} (x_n y_n) = \infty$
- (ii) If $\lim_{n\to\infty} x_n = \infty$ and $x_n \neq 0$, $\forall n \in \mathbb{N}$, then $\lim_{n\to\infty} \frac{1}{x^n} = 0$.
- (iii) If $\lim_{n\to\infty} x_n = 0$ and $x_n \neq 0$, $\forall n \in \mathbb{N}$, then $\lim_{n\to\infty} \frac{1}{x^n} = \infty$.

Read P.284 for more details!!

4. Bounded and Unbounded Sequences

Definition 4.1

A sequence $\{x_n\}_{n=1}^{\infty}$ is called **bounded sequence** iff $\exists M \in \Re$ s.t. $|x_n| \le M \quad \forall n = 1,2,3,...$ E.g. $s_n = \{\sin \frac{n\mathbf{p}}{2}\}$

Definition 4.2

 $\{x_n\}_{n=1}^{\infty}$ is **bounded above** (**below**) iff $\exists M \in R \text{ s.t. } x_n \leq (\geq)M \quad \forall n \in N \text{ and } M \text{ is called the upper bound (lower bound).}$

N.B.: the upper bound and lower bound of a sequence are *not unique*.

Theorem 4.1

A convergent sequence is a bounded sequence.

PROOF:

Suppose $\{x_n\}$ converges to L (i.e. $\lim_{n\to\infty} x_n = L$)

For any given >0 (take =1)

$$\forall e = 1 > 0$$
, $\exists N \in N \text{ s.t. } |x_n - L| < e = 1$. $\forall n > N$

$$|x_n - L| < 1$$

i.e. $-1 < x_n - L < 1$

$$L-1 < x_n < L+1 \quad \forall n > N$$

Take M = max $(|x_1|, |x_2|,, |x_n|, |L-1|, |L+1|)$, then $|x_n| \le M$. $\forall n = 1,2,3,....$

Hence $\{x_n\}$ is bounded.

N.B.:

The converses of the above theorem need not be true.

For instances {1,-1,1,-1,1,-1,....} it is bounded but it has no limit.

Theorem 4.2

$$\|\{x_n\}_{n=1}^{\infty}$$
 is called unbounded sequence iff $\exists M \in \Re^+$, $\exists n_o \in \mathbb{N}$ s.t. $|x_{n_o}| > M$.

N.B.:

If $\lim_{n\to\infty} x_n = \infty$ (OR $\pm\infty$), then the sequence $\{x_n\}$ is unbounded. Conversely, an unbounded sequence may not tend to infinity. For instance, the sequence $\{1,0,2,0,3,0...\}$ is unbounded, but it does not tend to infinity.

5. Properties of Limits of Sequences

$$y_n$$
 then $\exists N \in \mathbb{N}$ s.t. $x_n > y_n \quad \forall n > N$ (Important condition: only the tail!!)

Theorem 5.2

Uniqueness of Limit

The limit of a convergent sequence is unique.

Theorem 5.3

Principle of Sequeezing OR Sandwich Theorem

If
$$x_n \le y_n \le z_n$$
, $\forall_n > N$ Then if $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = \ell$

Then
$$\lim_{n\to\infty} y_n = \ell$$
.

PROOF:

Let be any given +ve number. For this , there is a positive integer N_1 , s.t.

$$a - e < x_n < a + e$$
, $\forall_n > N_1 \dots (1)$

Again, for this N_2 , s.t.

$$a - e < z_n < a + e$$
, $\forall_n > N_2 \dots (2)$

Take
$$N_3 = \max(N, N_1, N_2)$$
 then $n > N_3$.

Inequality (1), (2) & $x_n \le y_n \le z_n$ all hold simultaneously.

Hence
$$a - \mathbf{e} < x_n \le y_n \le z_n < a + \mathbf{e}$$
, $\forall n > N_3$.

$$|y_n - a| < \mathbf{e}, \quad \forall n > N_3.$$

 $\lim_{n \to \infty} y_n = a$

N.B.: The Squeezing principle is a very useful tool for evaluation of the limit of a given sequence.

Ex. 5.1: Find the limit of (a)
$$\lim_{n \to \infty} (\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2})$$

(b) Prove that
$$\lim_{n\to\infty} \frac{\sin n}{n} = 0$$

Ex.5.2: Let a be a real number >1. Prove that
$$\lim_{n\to\infty} \frac{n}{a^n} = 0$$

Ex.5.3: Find the
$$\lim_{n\to\infty} \sqrt[n]{n}$$

Operations of Limit of Sequences

Theorem 6.1

If
$$\lim_{n \to \infty} x_n = \ell_1$$
, $\lim_{n \to \infty} y_n = \ell_2$ then
$$(1) \quad \lim_{n \to \infty} (x_n \pm y_n) = \ell_1 \pm \ell_2$$

$$(1) \quad \lim_{n \to \infty} (x_n \pm y_n) = \ell_1 \pm \ell_2$$

(2)
$$\lim_{n \to \infty} (x_n y_n) = \ell_1 \cdot \ell_2$$

(3)
$$\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = \frac{\ell_1}{\ell_2} \text{ for } \ell_2 \neq 0 \& y_n \neq 0$$
(4)
$$\lim_{n \to \infty} kx_n = k \lim_{n \to \infty} x_n = k\ell_1 \text{ where k is a constant}$$

(4)
$$\lim_{n \to \infty} kx_n = k \lim_{n \to \infty} x_n = k\ell_1$$
 where k is a constant

(5) If
$$|x_n|$$
 is convergent, then $\lim_{n \to \infty} |x_n| = |\ell_1|$

N.B.: The converse is not true!!

$$\lim_{n \to \infty} |x_n| = |\ell_1| \quad \text{not} \quad \Rightarrow \quad \lim_{n \to \infty} x_n = \ell_1$$

$$\lim_{n \to \infty} |x_n| = |\ell_1| \quad \text{not} \quad \Rightarrow \quad \lim_{n \to \infty} x_n = \ell_1$$
e.g.
$$\lim_{n \to \infty} |(-1)^n| = 1 \quad \text{but} \quad \lim_{n \to \infty} |(-1)^n| \text{ does not exist.}$$

To apply (1) to (5), you must first check the limit of each term exists.

Ex. 6.1: Find
$$\lim_{n \to \infty} \frac{n^2 - n + 2}{3n^2 + 2n + 4}$$

Theorem 6.2 Let $\{x_n^{(1)}\}_{n=1}^{\infty}$, $\{x_n^{(2)}\}_{n=1}^{\infty} \dots \{x_n^{(k)}\}_{n=1}^{\infty}$ be m convergent sequences.

Where *m* is a fixed +ve integer & let $\lim_{n\to\infty} x_n^{(k)} = \ell_k$

(i)
$$\lim_{n \to \infty} \{ \sum_{k=1}^{m} x_n^{(k)} \} = \sum_{k=1}^{m} [\lim_{n \to \infty} x_n^{(k)}] = \sum_{k=1}^{m} \ell_k$$

(ii)
$$\lim_{n \to \infty} \{\prod_{k=1}^{m} x_n^{(k)}\} = \prod_{k=1}^{m} [\lim_{n \to \infty} x_n^{(k)}] = \prod_{k=1}^{m} \ell_k$$

Theorem 6.3

If $\{x_n\}$ is bounded & $\lim_{n\to\infty} y_n = 0$ then $\lim_{n\to\infty} (x_n y_n) = 0$

e.g. Find
$$\lim_{n\to\infty} \frac{(-1)^n}{n}$$

Theorem 6.4

If
$$\{x_n\}$$
 is bounded & $\lim_{n\to\infty} y_n = \infty$, then $\lim_{n\to\infty} (x_n + y_n) = \infty$

e.g. Find
$$\lim_{n\to\infty} (n+\sin n)$$

e.g. Find the limit of (a)
$$\lim_{n\to\infty} (\sin n + \frac{n^3}{\sqrt{n^2 + 1}})$$

(b)
$$\lim_{n\to\infty} [n+(-1)^n (\frac{1}{1.3} + \frac{1}{3.5} + \dots + \frac{1}{(2n-1)(2n+1)}]$$

7. Some worked examples:

- Ex. 7.1: Show that the limit value $\lim_{n\to\infty} \left(\frac{1}{n} \frac{2}{n} + \frac{3}{n} \frac{4}{n} + \dots + (-1)^{n-1} \frac{n}{n}\right)$ does not exist.
- **Ex. 7.2:** (1) Prove that $\lim_{n\to\infty} \frac{a^n}{n!} = 0 \quad \forall a \in \Re$
 - (2) Prove that for any +ve real numbers a & b, $\lim_{n \to \infty} [(a_n + b)^{\frac{1}{n}} 1] = 0$
 - (3) Find the $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}\right)$
 - (4) Find $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n+n}} \right)$
- **Ex.7.3:** Let $A \in \Re^+$ and $\{a^n\}$ be a sequence of real numbers s.t. $a_1 \ge A \& a_{n+1} = \frac{1}{2}(a_n + \frac{A^2}{a_n})$ for n > 1.
 - (a) Show that $a_n \ge A \quad \forall n \in \Re^+$, hence show that $a_n \ge A \le \frac{1}{2}(a_{n-1} A)$
 - (b) Find $\lim_{n \to \infty} a^n$.
- **Ex.7.4:** A sequence $\{a_n\}$ is defined by $a_1 = 4$ and $a_{n+1} = \frac{6a_n^2 + 6}{a_n^2 + 11}$ for $n \ge 1$.
 - (a) Prove, by induction, that $a_n > 3$, $\forall n \in \Re$
 - (b) Show that for any +ve integers n, $\frac{a_{n+1}-3}{a_n-3} < \frac{9}{10}$
 - (c) Find $\lim_{n\to\infty} a_n$.
- **Ex.7.5:** A sequence $\{x_n\}$ of real numbers is defined by $x_{n+1} = \frac{x_n + x_{n-1}}{2}$ for n > 1.
 - (a) Show that for n > 1, $x_n x_{n-1} = \left(-\frac{1}{2}\right)^{n-1} (x_1 x_0)$.
 - (b) Find $\lim_{n\to\infty} a_n$.
- **Ex.7.6:** The sequence $\{x_n\}$ is defined by $x_{n+1} = x_n^2 2x_n + 2$ for $n \ge 1$.
 - (a) Show that $x_{n+1} 1 = (x_1 1)^{2^n}$ for $n \ge 1$.
 - (b) Find the value of $\lim_{n\to\infty} x_n$ for the following cases:
 - (i) $1 < x_1 < 2$
 - (ii) $x_1 = 2$
 - (iii) $x_1 > 2$.
- **Ex.7.7:** Find two diverging sequences $\{x_n\}$ & $\{y_n\}$ s.t.
 - (a) $\{x_n \pm y_n\}$ is convergent;
 - (b) $\{x_n y_n\}$ is convergent.

8. Monotonic Sequences

Definition 8.1

 $\{x_n\}_{n=1}^{\infty}$ is said to be

(i) Monotonic increasing iff $x_{n+1} \ge x_n$ $\forall n = 1,2,3...$

(strictly increasing iff $x_{n+1} > x_n$)

- (ii) Monotonic decreasing iff $x_{n+1} \le x_n$ $\forall n = 1,2,3...$ (strictly decreasing iff $x_{n+1} < x_n$)
- (iii) Monotonic iff (i) OR (ii). $\forall n = 1,2,3,...$

Theorem 8.1

- (a) $\{x_n\}_{n=1}^{\infty}$ is monotonic increasing & bounded above (unbounded $\Rightarrow \lim_{n\to\infty} x_n = +\infty$) \Rightarrow
- (b) $\{x_n\}_{n=1}^{\infty}$ is monotonic decreasing & bounded below (unbounded $\Rightarrow \lim_{n \to \infty} x_n = -\infty$) \Rightarrow has limit.

Ex. 8.1:

Let a be a positive real number. A sequence $\{y_n\}$ is defined by $y_1 = \sqrt{2}$ and $y_n = \sqrt{2 + y_{n-1}}$, for n > 1

- (a) Show that $\{y_n\}$ is monotonic increasing;
- (b) Show that $\{y_n\}$ is bounded from above;
- (c) Find $\lim_{n\to\infty} y_n$.

Ex. 8.2:

Let a and b be 2 real numbers s.t. a > b > 0. Two sequences $\{a_n\}$ and $\{b_n\}$ are defined by $a_n = \frac{a_{n-1} + b_{n-1}}{2}$,

$$b_n = \sqrt{a_{n-1}b_{n-1}}$$
 for $n > 1$ & $a_1 = \frac{a+b}{2}$; $b_1 = \sqrt{ab}$.

- (a) Prove that $\{a_n\}$ is monotonic decreasing. Hence deduce that $\{b_n\}$ is monotonic increasing.
- (b) Prove that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Classwork Ex.:

- (1) Let $\{a_n\}$ be a sequence is defined by $a_1 = 1$ & $a_n = \frac{a_{n-1}}{a_{n-1+1}}$ for n > 1, show that $\{a_n\}$ is convergent & find its limit.
- (2) A sequence $\{x_n\}$ is defined by $x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$ for $n \ge 1$
 - (a) By using the result $\frac{1}{n^2} \le \frac{1}{n(n-1)} \quad \forall n > 1$,

Show that $\{x_n\}$ is bounded from above.

- (b) Show that $\{x_n\}$ is convergent.
- (3) $\lim_{n \to \infty} (\frac{2}{n} + \frac{4n}{4n-1})$
- $(4) \quad \lim_{n \to \infty} (\sqrt{n+1} \sqrt{n})$
- $(5) \quad \lim_{n \to \infty} \left(n \frac{n^2}{n+1} \right)$
- (6) $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right)$
- (7) $\lim_{n \to \infty} \frac{(3n+1)(2n^2-3)(2-n)}{n^3+1}$

(8)
$$\lim_{n \to \infty} n[\sqrt{1 + \frac{1}{n}} - \sqrt{1 - \frac{1}{n}}]$$

(9)
$$\lim_{n\to\infty} (\sqrt[3]{n+1} - \sqrt[3]{n})$$

(10)
$$\lim_{n \to \infty} \frac{2^n + 3^n}{2^n - 3^n}$$

(11)
$$\lim_{n\to\infty} \left[\frac{n}{n^2 - 2} + \frac{4^n (-1)^n}{2^n - 1} \right]$$

(12)
$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}$$

(13)
$$\lim_{n \to \infty} \left[\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} \right]$$

(14)
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{1 + 2 + \dots + k} \right)$$

9. An important limit: The number e

Prove: The sequence $a_n = (1 + \frac{1}{n})^n$ is monotonic increasing & bounded above by 3 & hence it is convergent.

Definition 9.1

The limit of the sequence $\{a_n\}$ $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ (exponential number).

i.e. As n , then
$$(1+\frac{1}{n})^n = 1 + \sum_{r=1}^n \{\frac{1}{r!} \prod_{k=0}^{r-1} (1-\frac{k}{n})\} \to 1 + \sum_{r=1}^{\infty} (\frac{1}{r!})$$
, it suggests that
$$e = \lim_{n \to \infty} (1+\frac{1}{n})^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots$$

Worked examples:

1. Show that (i)
$$\lim_{n \to \infty} (1 + \frac{1}{n})^{xn} = e^x$$

(ii)
$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$$

2. Evaluate the following limits:

(i)
$$\lim_{n \to \infty} \left(1 + \frac{1}{2^n}\right)^n$$

(ii)
$$\lim_{n \to \infty} \left(\frac{n}{1+n}\right)^n$$

(iii)
$$\lim_{n \to \infty} (\frac{n^2 + 1}{n^2})^{n^2 + 1}$$

3. Prove the followings:

(a)(i)
$$n! < (\frac{n+1}{2})^n, n > 1$$

(ii)
$$(\frac{n}{e})^n < n! < e(\frac{n}{2})^n$$

(b) Using (ii) prove that
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$